

Investigação do

PEGylated PLA Nanoparticles for dendritic cell targeting

Innovative Manufacturing in

Emergent Macromolecular Therapies

^{Medicamento} João Conniot^{1,2}, Sheiliza Carmali², Teresa S. Barata², Liana C. Silva¹, Rogério Gaspar¹, Steve Brocchini², Helena F. Florindo¹

¹Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; ²EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, UCL School of Pharmacy, London, UK.

jmoconniot@ff.ulisboa.pt

Background

- Conventional cancer treatments are generally unspecific and poorly effective.
- Dendritic cell (DC)-based cancer vaccines are expected to elicit a highly specific immune response against tumour cells.
- New efficient platform for specific DC targeting and for modulation of the intracellular trafficking of antigens need to be designed.

Purpose

Development of PLA-PEG-*bis*-sulfone polymeric nanoparticles (NPs)

for site-specific functionalization with ligands for DC targeting.

Results

Preliminary characterization of PLA-PEG-bis-sulfone 3

¹H-NMR Spectroscopy

(kDa) (h) (h

Characteristic peaks			
H-NMR (CDCl ₃ , 400 MHz)			
PLA	1.58 – 1.64 ppm		
PEG	3.48-3.7 ppm		
Bis-sulfone (Ar)	7 - 8 ppm		

SDS-PAGE of PLA-PEG-Fab conjugate

Lanes: 1 – DTT-reduced Fab; 2 – PLA-PEG-*bis*sulfone (Mw(PEG)= 10 kDa); 3 – Fab conjugation with PLA-PEG-*bis*-sulfone <u>3</u>.

Methods

- Preliminary characterisation of PLA-PEG-bis-sulfone <u>3</u> performed by ¹H-NMR. Conjugation of compound <u>3</u> to DTT-reduced antigenbinding fragments (Fabs) confirmed by SDS-PAGE.
- PLA-PEG-bis-sulfone NPs were prepared by the DESE method, using a blend of PLA-PEG-bis-sulfone/PLA. mPEG-PLA/PLA NPs were used as control.
- NPs were characterized using DLS, zeta potential (ZP) and TEM.
- Fabs were allowed to react overnight with *bis*-sulfone moieties of prepared NPs, under gentle stirring. The association of Fabs to PLA-PEG-*bis*-sulfone NPs was assessed by Ellman's reagent assay.

Characterization of PLA-PEG-bis-sulfone NPs

DLS, PdI and ZP

			ZP (mV)	
NP Formulation	Size (nm)	PdI	0.1 M PBS +	50 mM PBS +
		0.15 M NaCl	20 mM EDTA	
			pH 7.6	pH 7.8
mPEG-PLA NPs	265.5 ± 20.4	0.08 ± 0.02	-26.24 ± 1.21	0.76 ± 0.55
PLA-PEG-bis-sulfone NPs	275.2 ± 15.1	0.14 ± 0.06	-28.24 ± 1.30	0.92 ± 0.81
(N=3, mean ± SD)				

TEM

PLA-PEG-*bis*-sulfone NPs

Association efficiency of Fabs to NPs

NP Formulation	Association efficiency (%)
mPEG-PLA NPs	70.6
PLA-PEG-bis-sulfone NPs	83.2

(Preliminary assay, N=1)

Conclusions & Future Perspectives

- Synthesis of PLA-PEG-bis-sulfone <u>3</u> was proven and the polymer is able to bind to reduced Fabs.
- Both PLA-PEG-*bis*-sulfone and mPEG-PLA NPs exhibited spherical morphology, similar surface charge and size variability.
- The conjugation of Fabs to PLA-PEG-bis-sulfone NPs presented promising results, and optimization procedures will be explored in collaboration
 with Professor Nicholas Peppas' lab.
- NPs will be explored for DC targeting to potentiate tumor antigen delivery for the promotion tumor cell eradication .

References & Acknowledgements

Conniot J. *et al.;* (2014) Front. Chem.; 2: 105. Brocchini S. et al.; (2006) Nat. Protoc; 1: 2241-2252.

This work has been supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal (Project UT-PT program UTAP-ICDT/DTP-FTO/0016/2014, iMed.Ulisboa UID/DTP/04138/2013, and PhD grant: SFRH/BD/87150/2012).

MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

INTERNATIONAL COLLABORATORY FOR EMERGING TECHNOLOGIES, COLAB