Development of a Dual-Responsive Hydrogel Platform for Tumor-Targeted Drug Delivery
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We have developed cationic nanoscale hydrogels (nanogels)

that respond to the acidic intracellular environment for controlled, Chain Length
simultaneous delivery of multiple therapeutic agents
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° 45 Figure 3. Understanding the effect of copolymer composition will improve the delivery potential. Hydrogel

4. Targeting Moiety thermodynamic response (relative swelling ratio) and dynamic behavior (NG pKa and membrane disruption

. Polymer backbone amenable to POfV(efhyfif:rgg;%i?a?;emﬂemef’ potential) were investigated through systematic variation of monomer functionality and chain length.

many conjugation strategies

Figure 5. The rational design and characterization of P(DEAEMA)-g-PEGMA networks is
necessary for tailoring the NG system to allow for effective transport to the tumor site.

Figure 1. The NGs are comprised of: (i) a hydrophilic, cationic monomer that imparts the pH-response by
lonization of amine pendant groups, (ii) an enzyme-responsive, biodegradable crosslinker, (i) a hydrophilic A
graft to impart serum stability, and (iv) can be functionalized with a variety of targeting moieties. 3.5
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Figure 6. The grafted ligand density significantly
influences NG properties. Data represent mean
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+ SEM (n=3).
—e—Ethylhexyl MA ( )

Figure 4. A broad range of physicochemical
properties can be imparted through modification
to the network hydrophobicity. Data represent

(A) NGs were synthesized using an aqueous mean £ SEM (n=3).

one-pot, U3V—|n|t|ated emulsion polymerization (A,B) Increasing alkyl chain length significantly
technique®. broadens the hydrophobic-hydrophilic transition
with little impact to onset of swelling, while
(B) By DLS, NGs had a suitable size for tumor increasing steric bulk maintains breadth of
accumulation and showed a rapid transition to transition while offering a substantial decrease in
the swollen state with a large volume swelling onset of swelling.

ratio (VSR). Inset: Image of dry NGs by TEM

Figure 2. Synthesis of stimuli-responsive NGs.

(A) The amount of grafted stabilizer is more
important in determining the effective surface (-
potential than the nature of the core.

(B) Although changing the PEGMA coverage
altered the C-potential, the IEP remains constant.

(C) NG VSR s significantly influenced by the
amount of PEGMA. Surface coverage was

(scale bar 200 nm). (C) NG effective surface -potential as a function optimized to obtain the best physicochemical

of pH demonstrates that modifications properties for promoting increased cell uptake I I

predominantly affect the network core. - ' while reducing serum protein interactions. 0% % 2% 6%

PEGMA Mol% in Feed Solution

Relative Volume Swelling Ratio

Hydrodynamic Diameter (nm)
Effective Surface ¢-Potential (mV)

IMPROVED CELLULAR UPTAKE AND CONCLUSIONS
THERAPEUTIC LOADING ENDOSOMAL ESCAPE

it oechs/ - Hoechst/ Intelligent nanoscale hydrogels (nanogels) can be designed to
_ take advantage of unique phenotypic features of diseased tissues
ug Dye - mo- my : . In order to deliver a drug or imaging agent.

mg Nanogel Mpanogel
m, is the initial mass of dye in solution

m; is the final dye mass in in the filtrate + washes
Mhanoger1$ the initial mass of nanogel in solution

NGs comprised of P(DEAEMA)-g-PEGMA show promise as a
platform for controlled delivery of multiple therapeutic agents.

Nanogel + DY647-siRNA

A broad range of physicochemical properties can be imparted by

Model Hydrophilic Dye Model Hydrophobic Dye modifying the network hydrophobicity.
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The thermodynamic response and dynamic behavior must be
balanced with the ablility to entrap therapeutics and release with
the desired biological cue.
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0 Figure 9. NGs are capable of enhancing cellular uptake of therapeutics and inducing a robust gene silencing effect. hyd rophobicity has potential for increasing drug-polymer
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FIIT AT QD (A) RAW264.7 cells showing internalization of fluorescently-labeled NGs via confocal microscopy.> Cells were Interactions.
& P Q@Q P & incubated with 0.05 mg/ml NPs for 2 hrs prior to rinsing, fixing, staining, and mounting. Red: cell membrane stained
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(B) siRNA delivery to Caco-2 cells.* Nuclear stain (Hoechst 33342) shown in blue and DY647-siRNA (DyLight 647) COpOIymerS made from butyl tert-butyl and CyCIOhexyI

shown in red. Three representative images are shown, and scale bar represents 7 pm. ] a .
(C) GAPDH knockdown in Caco-2 cells following exposure to siRNA-loaded NGs.* Expression levels measured 48 methacrylate monomers dlSpIay enhanced ab”lty to facilitate

hrs after transfection using KDalert™ GAPDH assay. Data represent mean of % remaining GAPDH expression *
SEM (n=3, *p<0.05, *p<0.01). endosomal escape.

O

Figure 7. Dyes with similar MW and charge to
common chemotherapeutic agents were used to
enable rapid screening and selection of NGs with
improved delivery potential. Data represent mean +
SEM (n=3, *p<0.05, *p<0.01 from none).

(A,B) Single agent loading showed that hydrophilic
compound loading is minorly affected by variation in
NG hydrophobicity, and - as expected - trends with
VSR. Hydrophobic loading is influenced by improved
interactions between drug and hydrogel, and is able to
overcome the decrease in VSR.

(C) Co-loading studies demonstrated similar trends. r
Physiological ﬂ

Adjusting the PEGMA ligand density leads to varying NG surface
‘ + | | characteristics that can be exploited to enable long-circulation and
- Chain Lendth Steric Bulk__, effective transport of the nanoparticles a tumor.
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Figure 8. NGs are also highly suited for
protecting and delivering biomacromolecular
therapeutic agents. siRNA loading and is
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1'0 10'00 Figure 10. In order to effectively deliver drugs, the NG must be able to enable endosomal escape once uptaken by
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